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On Early Stopping in Gradient Descent Learning

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto

Abstract. In this paper we study a family of gradient descent algorithms to approx-
imate the regression function from reproducing kernel Hilbert spaces (RKHSs), the
family being characterized by a polynomial decreasing rate of step sizes (or learning
rate). By solving a bias-variance trade-off we obtain an early stopping rule and some
probabilistic upper bounds for the convergence of the algorithms. We also discuss the
implication of these results in the context of classification where some fast conver-
gence rates can be achieved for plug-in classifiers. Some connections are addressed
with Boosting, Landweber iterations, and the online learning algorithms as stochastic
approximations of the gradient descent method.

1. Introduction

In this paper we investigate the approximation by random examples of the regression
function from reproducing kernel Hilbert spaces (RKHSs). We study a family of gradient
descent algorithms to solve a least square problem, the family being characterized by a
polynomial decreasing rate of step sizes (or learning rate).

We focus on two iteration paths in RKHSs: one is the gradient flow for expected risk
minimization which depends on the unknown probability measure and is called here
the population iteration; the other is the gradient flow for empirical risk minimization
based on the sample, called here the sample iteration. Both paths start from the origin
and, as iterations go on, leave from each other. The population iteration converges to
our target, the regression function; however, the sample iteration often converges to an
overfitting function. Thus, keeping the two paths close may play a role of regularization
to prevent the sample iteration from an overfitting function. This exhibits a bias-variance
phenomenon: the distance between the population iteration and the regression function
is called bias or approximation error; the gap between the two paths is called variance
or sample error. Stopping too early may reduce variance but enlarge bias; and stopping
too late may enlarge variance though reduced bias. Solving this bias-variance trade-off
leads to an early stopping rule.

In the literature such a bias-variance view has been taken, explicitly or implicitly,
by boosting as a gradient descent method, where scaled convex hulls of functions are
typically used instead of RKHSs. The gap between the two paths (measured by some
risk functional or distance) typically grows in proportion to the radius (sum of absolute
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values of convex combination coefficients, or l1 norm) of the paths and thus restricting
that radius implements regularization (e.g., Lugosi and Vayatis, 2004; Blanchard, Lugosi,
and Vayatis, 2003). Recently, early stopping regularization was systematically studied in
the society of machine learning, see, for example, Jiang (2004) for AdaBoost, Bühlmann
and Yu (2002) for L2Boost, Zhang and Yu (2003) for Boosting with general convex loss
functions, and Bickel, Ritov, and Zakai (2005) for some generalized Boosting algorithms.
It is also interesting to note that Zhao and Yu (2004) introduced some backward steps
which have the effect of reducing the radius. Considering the square loss function, our
paper can be regarded as a sort of L2Boost, which, roughly speaking, extends some early
results in Bühlmann and Yu (2002) from Sobolev spaces with fixed designs to general
RKHSs with random designs (see Chapter I in Györfi, Kohler, Krzyżak, and Walk (2002)
for more discussions on random design versus fixed design).

In this paper we show by probabilistic upper bounds that under the early stopping
rule above, the proposed family of algorithms converges polynomially to the regression
function subject to some regularity assumption, where the constant step size algorithm
is the fastest one in the family since it requires the minimal number of iterations before
stopping. The rates presented in this paper are suboptimal and are expected to be improved
in various aspects. We also discuss the implications of our results in the context of
classification by showing that under a suitable assumption on the noise (Tsybakov, 2004)
some fast convergence rates to the Bayes classifier can be achieved.

Early stopping regularization has a crucial advantage over the usual regularized least
square learning algorithm (e.g., Smale and Zhou, 2005; De Vito, Rosasco, Caponnetto,
Giovannini, and Odone, 2004), which is also called ridge regression in statistical liter-
ature or Tikhonov regularization in inverse problems. Early stopping does not incur the
saturation phenomenon in the sense that the rate no longer improves when the regression
function goes beyond a certain level of regularity. The saturation problem was studied
intensively in inverse problems (e.g., Engl, Hanke, and Neubauer, 2000; Mathé, 2004).
Our algorithms here can be regarded as a randomized discretization of the Landweber
iterations in linear inverse problems.

The organization of this paper is as follows. Section 2 summarizes the main results
with discussions. In Section 3 we collect more discussions on related works. In detail,
Section 3.1 compares early stopping and the usual penalized least square algorithm
in learning; Section 3.2 discusses the connection to boosting in view of the gradient
descent method; Section 3.3 discusses the connection to the Landweber iteration in
linear inverse problems; Section 3.4 discusses the connection to the online learning as a
stochastic gradient method. Sections 4 and 5 contribute to the proofs. Section 4 describes
some crucial decompositions for later use. Section 5 presents the proofs of the upper
bounds for the sample error and the approximation error. In Section 6 we apply the main
theorem to the setting of classification. Finally, Section 7 summarizes the conclusions
and open problems in this paper.

2. Main Results

2.1. Definitions and Notations

Let the input space X ⊆ Rn be closed, the output space Y = R and Z = X × Y . Given
a sample z = {(xi , yi ) ∈ X × Y : i = 1, . . . ,m} ∈ Zm , drawn independently at random



On Early Stopping in Gradient Descent Learning 291

from a probability measure ρ on Z , one wants to minimize over f ∈ H the following
quadratic functional:

E( f ) =
∫

X×Y
( f (x)− y)2 dρ(1)

where H is some Hilbert space of real functions on X . In this paper we choose H as a
reproducing kernel Hilbert space (RKHS), in which the gradient map takes an especially
simple form.

Here we recall some basic definitions on RKHSs. Let K : X × X → R be a Mercer
kernel, i.e., a continuous, symmetric, positive semidefinite function. Let Kx : X → R

be the function defined by Kx (s) = K (x, s) for x, s ∈ X . Let H K be the RKHS
associated to a Mercer kernel K , i.e., H K = span{Kx : x ∈ X}, where the closure
is taken with respect to the inner product 〈 , 〉K as the unique linear extension of
〈Kx , Kx ′ 〉K = K (x, x ′). Denote by ‖ · ‖K the norm of H K .

The most important property of RKHSs is the reproducing property: for any f ∈H K

and x ∈ X , f (x) = 〈 f, Kx 〉K . The reproducing property enables one to define the sam-
pling operator on H K . Given a set x = (xi )

m
i=1 ∈ Xm , denote by l2(x) the inner product

space of real functions on x with the inner product 〈u, v〉l2(x) = (1/m)
∑

xi∈x u(xi )v(xi ).
As a vector space, l2(x) is identical to the Euclidean spaceRm . Define a sampling operator
Sx : H K → l2(x) by Sx( f ) = ( f (xi ))

m
i=1 = (〈 f, Kxi 〉K ). Its adjoint S∗x : l2(x)→ H K

defined by 〈Sx( f ), y〉l2(x) = 〈 f, S∗x y〉K for y ∈ l2(x), is thus S∗x (y) = (1/m)
∑m

i=1 yi Kxi .
Such sampling operators are used in a generalization of the Shannon Sampling Theorem
(Smale and Zhou, 2004).

Our target will be the regression function, fρ(x) =
∫

y dρY |x , i.e., the conditional
expectation of y with respect to x , where ρY |x is the conditional measure on Y given x .
Denote by ρX the marginal probability measure on X and let L 2

ρX
be the space of square

integrable functions with respect to ρX , whose inner product (norm) is denoted by 〈 , 〉ρ
(‖ , ‖ρ). Due to the relation

E( f )− E( fρ) = ‖ f − fρ‖2
ρ,

the regression function fρ is the minimizer of E( f ) over L 2
ρX

.
Next we define an integral operator which plays a central role in the theory. Let L K :

L 2
ρX
→ C(X) be an integral operator defined by (L K f )(x ′) = ∫

K (x ′, x) f (x) dρX ,
where C(X) is the Banach space of real continuous functions on X .

Throughout the paper we assume the following.

Finiteness Assumption.

(1) Let κ := max(supx∈X

√
K (x, x), 1) <∞.

(2) There exists a constant M ≥ 0 such that supp(ρ) ⊆ X × [−M,M].

Remark 2.1. The first assumption ensures that the Mercer kernel K is square-sum-
mable, whence we have the inclusion J : L K (L

2
ρX
) ↪→ L 2

ρX
. The composition J ◦ L K :

L 2
ρX
→ L 2

ρX
is a Hilbert–Schmidt (in fact, trace-class) operator. Passing through the

spectrum of L K : L 2
ρX
→ L 2

ρX
, one can define Lr

K : L 2
ρX
→ L 2

ρX
for r ∈ R. In

particular, L1/2
K is a Hilbert space isometry between L 2

ρX
/ker(L K ) and H K , whence



292 Y. Yao, L. Rosasco, and A. Caponnetto

independent to ρX . The restriction L K |H K induces an operator from H K into H K . All
three operators above, L K : L 2

ρX
→ C(X), J ◦ L K : L 2

ρX
→ L 2

ρX
, and L K |H K :

H K → H K , when their domains are clear from the context, are denoted by L K . The
first assumption leads to ‖Sx‖ = ‖S∗x‖ ≤ κ and ‖L K‖ ≤ κ2 for all three operators. The
second assumption is met in most cases in learning, and can be relaxed to higher-order
moment conditions on ρ, which is however not pursued in this paper.

Therefore, the minimization of (1) is equivalent to finding approximations of fρ from
H K , a subspace of L 2

ρX
when K is square-summable. Note that H K is a closed subspace

of L 2
ρX

if and only if it is of finite dimension.

2.2. Gradient Descent Algorithms

First we define two iterations: sample iteration and population iteration, then we show that
they are simply gradient descent algorithms with respect to proper objective functions.

Given an i.i.d. sample of size m, z ∈ (X × Y )m , define the sample iteration as the
sequence ( f z

t )t∈N ∈H K by

f z
t+1 = f z

t −
γt

m

m∑
i=1

(
f z
t (xi )− yi

)
Kxi , f z

0 = 0,(2)

where γt > 0 is the step size (or learning rate). Now define the population iteration as
the sequence

ft+1 = ft − γt L K ( ft − fρ), f0 = 0.(3)

Clearly ft is deterministic and f z
t is an H K -valued random variable depending on z.

In this paper we investigate the choice of step sizes in the form of γt = 1/[κ2(t + 1)θ ]
(t ∈ N) for some θ ∈ [0, 1).

The following proposition shows that the algorithm (3) is a gradient descent method
for minimizing (1) over H K and the algorithm (2) is the gradient descent method to
minimize over H K the following empirical risk

E z( f ) := 1

m

m∑
i=1

( f (xi )− yi )
2.(4)

Recall that given a real functional V : H → R, the Fréchet derivative of V at f ,
DV ( f ) : H → R is the linear functional such that, for g ∈H ,

lim
‖g‖H→0

|V ( f + g)− V ( f )− DV ( f )(g)|
‖g‖H = 0,

and the gradient of V as a map grad V : H →H is defined by

〈grad V ( f ), g〉H = DV ( f )(g) for all g ∈H .

Then we have the following result.
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Proposition 2.2. The gradients of (1) and (4) are the maps from H K into H K given by

grad E( f ) = 2L K ( f − fρ),

and

grad E z( f ) = 2

m

m∑
i=1

( f (xi )− yi )Kxi .

Proof. Define a functional V : H K → R by V ( f ) = ( f (x) − y)2. Then its Fréchet
derivative is

DV ( f )(g) = 〈2( f (x)− y)Kx , g〉K ,
and thus the gradient map is grad V ( f ) = 2( f (x) − y)Kx . Taking expectations,
grad E( f )=E[grad V ( f )]=2

∫
X×Y ( f (x)− y)Kx dρ=2L K ( f − fρ) and grad E z( f ) =

Ê[grad V ( f )] = (2/m)
∑m

i=1( f (xi )− yi )Kxi , where E denotes the expectation with re-
spect to probability measure ρ and Ê denotes the expectation with respect to the uniform
probability measure on z, often called the empirical measure.

Soon we shall see that the population iteration ft converges to fρ , while the sample
iteration f z

t does not. In most cases, f z
t converges to an undesired overfitting solution

which fits exactly the sample points but has large errors beyond them. However, via the
triangle inequality

‖ f z
t − fρ‖ρ ≤ ‖ f z

t − ft‖ρ + ‖ ft − fρ‖ρ,
we may control ‖ f z

t − fρ‖ρ . Here we call the gap between two iteration paths, ‖ f z
t − ft‖ρ ,

the sample error (or variance), and the distance, ‖ ft − fρ‖ρ , the approximation error
(or bias). The theorems in the next section give upper bounds for each of them.

2.3. Early Stopping and Probabilistic Upper Bounds

In this section we state and discuss the main results in the paper.
First we assume some regularity property on fρ . Let BR = { f ∈ L 2

ρX
: ‖ f ‖ρ ≤ R}

(R > 0) be the function ball in L 2
ρX

with radius R and centered at the origin. In this
paper we assume that for some r > 0, fρ ∈ Lr

K (BR), i.e., fρ lies in the image of the
ball BR under the map Lr

K . Roughly speaking, such a condition imposes a low-pass filter
on fρ which amplifies the projections of fρ on the eigenvectors of L K : L 2

ρX
→ L 2

ρX

with large eigenvalues and attenuates the projections on the eigenvectors with small
eigenvalues.

Main Theorem. Suppose fρ ∈ Lr
K (BR) for some R, r > 0. Let γt = 1/[κ2(t + 1)θ ]

(t ∈ N) for some θ ∈ [0, 1). For each m ∈ N, there is an early stopping rule t∗ : N→ N

such that the following holds with probability at least 1− δ (δ ∈ (0, 1)):

(1) if r > 0, then

‖ f z
t∗(m) − fρ‖ρ ≤ Cρ,K ,δm

−r/(2r+2),

where Cρ,K ,δ = [4(1+√2)M/(1− θ)] log1/2 2/δ + R(2rκ2/e)r ;
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(2) if r > 1
2 , then fρ ∈H K and

‖ f z
t∗(m) − fρ‖K ≤ Dρ,K ,δm

−(r−1/2)/(2r+2),

where Dρ,K ,δ = [4(1+√2)M/κ(1− θ)3/2] log1/2 2/δ+R(2(r − 1/2)κ2/e)r−1/2.
In both cases, the stopping rule can be chosen as

t∗(m) = �m1/(2r+2)(1−θ)�,
where �x� denotes the smallest integer greater then or equal to x ∈ R.

Its proof will be given at the end of this section.

Remark 2.3. The first upper bound holds for all r > 0. In the second upper bound,
r > 1

2 implies fρ ∈H K as L1/2
K : L 2

ρX
/ker(L K )→H K is a Hilbert space isometry. In

particular, when r →∞, we approach the asymptotic rate ‖ f z
t∗(m) − fρ‖ρ ≤ O(m−1/2)

and ‖ f z
t∗(m)− fρ‖K ≤ O(m−1/2), at a price of the constants growing exponentially with

r . This happens when H K is of finite dimension, e.g., when K is a polynomial kernel.
Such a result improves the upper bounds for the usual regularized least square algorithm
(Minh, 2005; or the Appendix by Minh, in Smale and Zhou, 2005) where the upper
convergence rate is slower than O(m−1/3) for r > 0 (or O(m−1/4) for r > 1

2 ). This
fact is related to the saturation phenomenon in the classical studies of inverse problems
(Engl, Hanke, and Neubauer, 2000). We shall come back to this point in Section 3.1.

Remark 2.4. Here we address the optimality issue about the convergence rates. Some
minimax lower rates (De Vore, Kerkyacharian, Picard, and Temlyakov, 2004, Temlyakov,
2004) and individual lower rates (Caponnetto and De Vito, 2005) suggest that, for r > 0
the L 2

ρX
-convergence rate O(m−r/(2r+1)) is the optimal kernel-independent rate, in the

sense that the rate is independent of the decaying rate of the eigenvalues of L K . In this
sense, the Main Theorem has only suboptimal rates. To the authors’ knowledge, recently
there have been some improvements in several restricted settings. In fixed designs with
constant step sizes, Bissantz, Hohage, Munk, and Ruymgaart (2006) show that the opti-
mal rate can be achieved. In random designs, if fρ ∈H K (i.e., r ≥ 1

2 ) Bauer, Pereverzev,
and Rosasco (2006) show that the optimal rates can be achieved. The difficulty in random
designs is due to that the sample iteration and population iteration use distinct operators
which cannot be diagonalized simultaneously as can be done in fixed designs. In the latter
work this difficulty was overcome by a crucial notion of operator monotonicity (Mathé
and Pereverzev, 2002). However, in their work, a different bias-variance decomposition
approach was used which requires fρ ∈ H K and thus cannot be applied to the setting
of 0 < r < 1

2 . Recently, Caponnetto (2006) suggests that in semisupervised learning,
by exploiting unlabeled data, one may get the optimal upper rates when r ∈ (0, 1

2 ).
Therefore, it is still an open problem of how to achieve the optimal rates for r ∈ (0, 1

2 ).

Remark 2.5. Roughly speaking, the Main Theorem extends the convergence of L2

Boost (Bühlmann and Yu, 2002) in Sobolev spaces with fixed designs to general RKHSs
with random designs. For example, let X = Sd be the d-sphere and let ρX be the uniform
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measure on Sd , then following Wahba (1990) one can take a Sobolev space Wd(Sd) as
an RKHS H K , such that the associated integral L K has eigenvalues λn ∼ n−1. Then
fρ ∈ Ls/d

K (BR) implies that fρ ∈ Ws(Sd). The Main Theorem gives an upper L 2
ρX

-
convergence rate O(m−s/(2s+2d)) for r > 0, which is suboptimal due to the reason stated
in Remark 2.4.

Now we discuss a direct application of the Main Theorem to the setting of classifi-
cation. Notice that when Y = {−1, 1}, algorithm (2) may provide a classification rule
sign f z

t∗ , often called plug-in classifier in literature. Hence we may consider such a rule as
an approximation of the Bayes rule, sign fρ . The following result gives an upper bound
on the distance ‖ sign f z

t − sign fρ‖ρ .

Theorem 2.6. Assume the same condition as the Main Theorem. Moreover, suppose
Y = {−1, 1} and Tsybakov’s noise condition

ρX ({x ∈ X : | fρ(x)| ≤ t}) ≤ Bqtq , ∀ t > 0,(5)

for some q ∈ [0,∞] and Bq ≥ 0. Then:

(1) if r > 0, the following holds with probability at least 1− δ (δ ∈ (0, 1)),

‖sign f z
t∗(m) − sign fρ‖ρ ≤ C1m−αr/2(r+1)(2−α),

where α = q/(q + 1) and C1 = [16(1+√2)(Bq + 1)M/(1− θ)] log1/2 2/δ +
4(Bq + 1)R(2rκ2/e)r ;

(2) if r > 1
2 , the following holds with probability at least 1− δ (δ ∈ (0, 1)),

‖sign f z
t∗(m) − sign fρ‖ρ ≤ C2m−q(r−1/2)/(4r+4),

where C2 = 2
√
κBq Dρ,K ,δ;

(3) if r > 1
2 , and the hard margin condition holds

ρX ({x ∈ X : | fρ(x)| ≤ γ }) = 0,

the following upper bound holds:

Ez∈Zm [‖sign f z
t∗(m) − sign fρ‖ρ] ≤ C3e−C4γm(r−1/2)/(2r+2)

,

where C3 = 2−1−[κR(1−θ)3/2/4M(1+√2)]·(2(r−1/2)κ2/e)r−1/2
and C4 =

[(1− θ)3/2 log 2]/4M(1+
√

2).

The proof, together with a detailed introduction to the background, is given in Sec-
tion 6.

Remark 2.7. The first bound holds for all r > 0, with an implication that asα = 1 (e.g.,
fρ has a hard margin) and r → ∞ (e.g., H K is of finite dimension), the convergence
rate may approach O(1/

√
m) arbitrarily. The second upper bound holds only for r > 1

2
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(whence fρ ∈ H K ), which however implies that as q → ∞ (i.e., α → 1), one can
achieve an arbitrarily fast polynomial convergence rate. The third upper bound goes
even further, which says that for r > 1

2 and a hard margin assumption, an exponential
convergence rate can be achieved for the mean error. For more types of exponential rates
for plug-in classifiers, see Audibert and Tsybokov (2005) and references therein.

Remark 2.8. Consider the Bayes consistency. Define the risk of f by

R( f ) = ρZ ({(x, y) ∈ Z | sign f (x) �= y}),
and let R( fρ) be the Bayes risk. Using the comparison results in Proposition 6.2, we
may obtain similar upper bounds for the error R( f z

t∗(m))− R( fρ).

Next we present upper bounds for the sample error and the approximation error,
respectively, which are used to prove the Main Theorem. To improve the Main Theorem,
it is crucial to get sharper results on the sample error rate.

Theorem 2.9 (Sample Error). With probability at least 1− δ (δ ∈ (0, 1)) there holds,
for all t ∈ N,

‖ f z
t − ft‖ρ ≤ C5

t1−θ
√

m
,

where C5 = [2(1+
√

2)M/(1− θ)] log1/2 2/δ; and

‖ f z
t − ft‖K ≤ C6

√
t3(1−θ)

m
,

where C6 = [2(1+
√

2)M/κ(1− θ)3/2] log1/2 2/δ.

Theorem 2.10 (Approximation Error). Suppose fρ ∈ Lr
K (BR) for some R, r > 0 and

f0 = 0. Then, for all t ∈ N,

‖ ft − fρ‖ρ ≤ C7t−r(1−θ),

where C7 = R(2rκ2/e)r ; and if, moreover, r > 1
2 , then fρ ∈H K and

‖ ft − fρ‖K ≤ C8t−(r−1/2)(1−θ),

where C8 = R(2(r − 1/2)κ2/e)r−1/2.

Their proofs are given in Section 5.

Remark 2.11. It can be seen that the population iteration ft converges to fρ , while
the gap between the population iteration and sample iteration (i.e., the sample error)
expands simultaneously. The step size γt affects the rates of both. When γt shrinks faster
(larger θ ), the approximation error (bias) drops slower, while the sample error (variance)
grows slower.
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Finally, combining these upper bounds, we obtain an immediate proof of the Main
Theorem by solving a bias-variance trade-off.

Proof of the Main Theorem. Combining Theorems 2.9 and 2.10, we have

‖ f z
t − fρ‖ρ ≤ C5

t1−θ
√

m
+ C7t−r(1−θ).

Let t∗(m) = �mα�, the smallest integer greater than or equal to mα for some α > 0.
Minimizing the right-hand side over α > 0 we arrive at the linear equation

α(1− θ)− 1
2 = −αr(1− θ)

whose solution is α = 1/(2r + 2)(1− θ).
Assume for some β ∈ [1, 2] such that mα ≤ t∗(m) = βmα ≤ mα + 1 ≤ 2mα . Then

‖ f z
t∗ − fρ‖ρ ≤ (β1−θC5 + β−r(1−θ)C7)m

−r/(2r+2) ≤ (2C5 + C7)m
−r/(2r+2).

Essentially the same reasoning leads to the second bound.

3. Discussions on Related Work

In this section we provide more discussions on the comparison between early stopping
and Tikhonov regularization used in the usual regularized least square algorithm, Boost-
ing in the gradient descent view, Landweber iterations to solve linear equations, and
online learning algorithms as stochastic approximations of the gradient descent method.

3.1. Early Stopping versus Penalized Least Square

Recently, the following penalized least square algorithm gained an extensive study in
learning (e.g., Cucker and Smale, 2002; Smale and Zhou, 2005),

fλ = arg min
f ∈H K

E( f )+ λ‖ f ‖2
K ,

where it can be shown that

fλ = (L K + λI )−1L K fρ.

On the other hand, for constant step sizes γt = γ0 = 1 (assuming κ = 1), the population
iteration (3) becomes

ft =
t−1∑
i=0

(I − L K )
i L K fρ =

t−1∑
i=0

(I − L K )
i (I − (I − L K )) fρ = (I − (I − L K )

t ) fρ.

Both fλ and ft can be regarded as low-pass filters on fρ , which tends to project fρ to the
eigenfunctions corresponding to large eigenvalues. The applications of early stopping
regularization in statistical estimation can at least be traced back to Wahba (1987).
Moreover, it is shown in Fleming (1990) that if the L K is a finite rank operator (matrix)
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and if the step size γt is taken to be a finite rank operator (matrix), then there is a
one-to-one correspondence between the two regularization methods.

On the other hand, there are also significant differences between ft and fλ. First of
all, ft has a better approximation ability than fλ. In fact, it can be shown (Minh, 2005; or
the Appendix by Minh, in Smale and Zhou, 2005) that, if fρ ∈ Lr

K (BR) for some r > 0,

‖ fλ − fρ‖ρ ≤ O(λmin(r,1)),

and for r > 1
2 ,

‖ fλ − fρ‖K ≤ O(λmin(r−1/2,1)).

We can see for large r , the upper bound cannot go faster than λ (as λ→ 0) in Tikhonov
regularization. On the other hand, taking θ = 0 in Theorem 2.10 we have that, for r > 0,

‖ ft − fρ‖ρ ≤ O(t−r ),

and for r > 1
2 ,

‖ ft − fρ‖K ≤ O(t−(r−1/2)).

We may roughly regard such a relationship between regularization parameters, λ ∼ 1/t ,
where ft has faster approximation rates than fλ for large r . In particular, this leads to an
optimal convergence rate O(m−1/2) in the Main Theorem as r →∞, in contrast for the
usual penalized least square the best known upper convergence rates in L 2

ρX
and H K

are O(m−1/3) (for r ≥ 1) and O(m−1/4) (for r ≥ 3
2 ), respectively. This phenomenon

is studied as the saturation of regularizations in classical inverse problems (e.g., Engl,
Hanke, and Neubauer, 2000).

On numerical aspects, the computational cost of Tikhonov regularization essentially
needs inverting a matrix which is of O(m3) floating point operations, where early stop-
ping regularization needs O(t∗m2), where t∗ is the early stopping time. Thus, for those
kernel matrices with special structures, where a few iterations are sufficient to provide
a good approximation (i.e., t∗ � m), early stopping regularization is favored. For those
very ill-conditioned kernel matrices, conjugate gradient descent methods or more so-
phisticate iteration methods (Hanke, 1995; Ong, 2005) are suggested to achieve faster
numerical convergence.

3.2. Perspectives on Boosting

The notion of boosting was originally proposed as the question as to whether a “weak”
learning algorithm which performs just slightly better than random guessing can be
“boosted” into a “strong” learning algorithm of high accuracy (Valiant, 1984; or see
the review by Schapire, 2002 or Dietterich, 1997). For example, AdaBoost (Freund and
Schapire, 1997) is claimed to be one of the “best off-shelf” machine learning algorithms.

Although running long enough AdaBoost will eventually overfit, during the process
it exhibits resistance against overfitting. This phenomenon suggests that it might be the
dynamical process of boosting which accounts for regularization. Note that there are
two dynamical systems in AdaBoost: one is the evolution of the empirical distributions
on the sample, and the other is the evolution in hypothesis spaces. Thus one may study
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both dynamical systems, or either one. For example, studies on both lead to game theory
(e.g., Breiman, 1999; Freund and Schapire, 1999; Schapire, 2001; Stoltz and Lugosi,
2004), the first has been seen in Rudin, Daubechies, and Schapire (2004) and the second
leads to the functional gradient descent view with general convex loss functions (e.g.,
Breiman, 1999; Friedman, Hastie, and Tibshirani, 2000; Mason, Baxter, Bartlett, and
Frean, 2000; Friedman, 2001), where this paper is also included.

In view of gradient descent with L2 loss, our algorithms can also be regarded as a
boosting procedure, L2Boost (Bühlmann and Yu, 2002). The “weak learners” here are
the functions Kxi (i = 1, . . . ,m), where xi ∈ X is an example. Such functions can
be regarded as generalizations of the sinc function in the Shannon Sampling Theorem
(Smale and Zhou, 2004). A rough comparison on the convergence rates with Bühlmann
and Yu (2002) is in Remark 2.5.

The treatment in this paper adopts the same bias-variance decomposition as in other
consistency studies on boosting (e.g., Jiang, 2004; Breiman, 2004; Lugosi and Vayatis,
2004; Zhang and Yu, 2003). However, we did not use VC-dimension or Rademacher
complexity to bound the sample error. Instead, we benefit from the linear structure in
RKHS by exploiting concentration inequalities for random Hilbert–Schmidt operators
and vectors to derive the uniform convergence and its rates, which simplifies the anal-
ysis. The idea that norm convergence of operators leading to uniform convergence of
sequences is, in fact, not new in the literature, e.g., Yosida and Kakutani (1941) or see
the comments in Peskir (2000).

3.3. Perspectives on Landweber Iterations

In this subsection we show that the population iteration (3) can be regarded as the
Landweber iteration for a specific linear operator equation and the sample iteration (2) is
a discretization of such an algorithm by random samples. We also point out one difference
in learning and inverse problem formulation, where one should be careful in applying
the results in inverse problems to learning.

Consider the following linear operator equation:

IK f = fρ,(6)

where the linear map IK : H K ↪→ L 2
ρX

is a continuous inclusion. Without loss of
generality, assume that ρX is strictly positive on X , which makes IK injective, i.e., an
embedding. This is an ill-posed problem as in general fρ �∈ H K . However, if fρ ∈
H K ⊕H K

⊥
, then the following normal equation has a solution:

I ∗K IK f = I ∗K fρ,(7)

where the adjoint of IK , I ∗K : L 2
ρX
→ H K is simply the operator L K : L 2

ρX
→ H K .

Note that I ∗K IK = L K : H K →H K and IK I ∗K = L K : L 2
ρX
→ L 2

ρX
. Thus the normal

equation is simply

L K f = L K fρ.(8)

Actually, the first L K is L K : H K →H K and the second L K is L K : L 2
ρX
→H K . In

this way one can see that the population iteration (3) with the choice γt = 1/κ2 is the
Landweber iteration (Engl, Hanke, and Neubauer, 2000) to solve (6).
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Consider the following discretized version of (6),

Sx f = y,(9)

whose normal equation is

S∗x Sx f = S∗x y,(10)

where Sx : H K → l2(x) is the sampling operator. In this way, the sample iteration (2)
can be rewritten as

f z
t+1 = f z

t − γt (S
∗
x Sx f z

t − S∗x y),(11)

and with the choice γt = 1/κ2, it is the Landweber iteration to solve (9). In fixed designs,
x is not randomly sampled from ρX but fixed in advance such that L K = S∗x Sx, where
only the output noise on y is considered.

It should be noted that the setting of learning goes slightly beyond the classical setting
of inverse problems.

In classical inverse problems we require fρ ∈ H K ⊕H K
⊥

(if fρ ∈ Lr
K (BR), this

requirement becomes fρ ∈ H K ) for the existence of a solution of normal equation (7)
or, equivalently, we require PK fρ ∈ H K where PK : L 2

ρX
→ H K is the projection

from L 2
ρX

onto the closure of H K in L 2
ρX

. In this case, one can define f †
ρ = PK fρ as

the generalized inverse of fρ , i.e., the unique minimal norm least square solution of (6)
in H K , and study the convergence

‖ ft − f †
ρ ‖K → 0

under the assumption f †
ρ = (I ∗K IK )

r g for some ‖g‖K ≤ R.

However, in learning, one typically has fρ �∈ H K ⊕H K
⊥

or PK fρ �∈ H K , whence
f †
ρ does not exist. For example, choose a Gaussian kernel K (x, x ′) = e−a‖x−x ′‖2

(a > 0)

such that H K is dense in L 2
ρX

and fρ �∈ H K . In this case, ft diverges in H K but

converges in L 2
ρX

,

‖ ft − PK fρ‖ρ → 0

under the assumption that fρ = (IK I ∗K )
r g for some ‖g‖ρ ≤ R.

For a broader discussion on learning versus inverse problems, see De Vito, Rosasco,
Caponnetto, Giovannini, and Odone (2004).

3.4. Perspectives on Online Learning

An online learning algorithm was suggested in Smale and Yao (2005) as stochastic
approximations of the gradient descent method for the following penalized least square
problem:

min
f ∈H K

E( f )+ λ‖ f ‖2
K , λ ≥ 0.

To be precise, the algorithm returns a sequence ( ft )t∈N defined by

f̂t = f̂t−1 − γt [( f̂t−1(xt )− yt )Kxt + λ f̂t−1] for some f̂0 ∈H K ,(12)
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where f̂t depends on zt = (xt , yt ) and f̂t−1 which only relies on the previous examples
zt−1 = (xi , yi )1≤i≤t−1. Note that, in this paper, the sample z ∈ Zm is fixed during the
iterations and the regularization parameter λ = 0 is replaced by some early stopping
rule.

Shrinking the step size γt plays different roles in this paper and in online learning
algorithms. In this paper it might only affect the stopping time, but not the rate of
convergence. In fact, in the Main Theorem, the constant step size, i.e., θ = 0, leads to
the fastest algorithm in the family in the sense that the algorithm requires the minimal
number of iterations before stopping, while all the algorithms are guaranteed with the
same upper convergence rates. Therefore, shrinking the step size chosen in this paper does
not contribute to the regularizations. However, in online learning, it significantly affects
the regularization. In fact, to ensure the convergence of online learning algorithm (12),
one needs to shrink step sizes γt → 0; but the shrinkage can’t go too fast:

∑
t γt = ∞

is necessary to “forget” the initial error (e.g., see Yao (2005)). This phenomenon might
suggest further investigations on the roles of restricting step sizes as regularization in
various settings.

A close connection can be seen from the structural decomposition in Proposition 4.3,
which gives

f z
t − ft = rt (L K )( f z

0 − f0)+
t−1∑
k=0

γkπ
t
k+1(L K )χk,

where χk = (L K−S∗x Sx) f z
k +S∗x y−L K fρ . In Yao (2005), the martingale decomposition

gives

f̂t − fλ = rt (L K + λI )( f̂0 − fλ)+
t−1∑
k=0

γkπ
t
k+1(L K + λI )χ̂k,

where χ̂k = (L K − S∗xk+1
Sxk+1) f̂k + S∗xk+1

(yk+1) − L K fρ . The key difference lies in the

fact that since f̂k only depends on historical examples z1, . . . , zk , χ̂k is a martingale
sequence with E[χ̂k |z1, . . . , zk] = 0. However, χk loses this feature since in iterations
every f z

k depends on the whole sample z.

4. Some Function Decompositions

The next two sections are devoted to the proof of the upper bounds on sample error
and approximation error, i.e., Theorems 2.9 and 2.10. In this section we provides some
decompositions for ft , f z

t , and f z
t − ft , which are crucial to estimating the sample error

in Section 5.

4.1. Regularization and Residue Polynomials

Before studying the sample error, we define some polynomials which will be used to
represent the decomposition in a neat way.
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For x ∈ R, define a polynomial of degree t − k + 1,

π t
k(x) =




t∏
i=k

(1− γi x) , k ≤ t,

1, k > t.

(13)

An important property about π t
k is that by the telescope sum

t−1∑
k=τ

γk xπ t−1
k+1(x) =

t−1∑
k=τ
(1− (1− γk x))π t−1

k+1(x)(14)

=
t−1∑
k=τ
(π t−1

k+1(x)− π t−1
k (x)) = 1− π t−1

τ (x).

This property motivates the definition of two important polynomials: define the regular-
ization polynomial

gt (x) =
t−1∑
k=0

γkπ
t−1
k+1(x),(15)

and the residue polynomial

rt (x) = 1− xgt (x) = π t−1
0 (x).(16)

Given a polynomial p(x) = a0 + a1x + · · · + an xn and a self-adjoint operator T , we
write p(T ) for the operator a0 I + a1T + · · · + anT n .

Lemma 4.1. Let T be a compact self-adjoint operator. Suppose 0 ≤ γt ≤ 1/‖T ‖ for
all t ∈ N. Then:

(1) ‖π t
k(T )‖ ≤ 1;

(2) ‖gt (T )‖ ≤
∑t−1

k=0 γk ;
(3) ‖rt (T )‖ ≤ 1.

Proof. The results follow from the spectral decomposition of T (see, e.g., Engl, Hanke,
and Neubauer (2000)) and the following estimates: suppose 0 ≤ γt x ≤ 1 for all t ∈ N,
then:

(A) |π t
k(x)| ≤ 1;

(B) |gt (x)| ≤
∑t−1

k=0 γk ;
(C) |rt (x)| ≤ 1.

These bounds are tight since π t
k(0) = rt (0) = 1 and gt (0) =

∑t−1
k=0 γk .
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4.2. Some Decompositions

The following proposition gives explicit representations of ft and f z
t .

Proposition 4.2. For all t ∈ N,

(1) ft = rt (L K ) f0 + gt (L K )L K fρ ;
(2) f z

t = rt (S∗x Sx) f z
0 + gt (S∗x Sx)S∗x y.

Proof. The first identity follows from induction on (3) and the second follows from
induction on (11).

Define the remainder at time t to be rt = f z
t − ft . The following proposition gives a

decomposition of remainder which is crucial in the upper bound for the sample error.

Proposition 4.3 (Remainder Decomposition). For all t ∈ N,

f z
t − ft = rt (L K )( f z

0 − f0)+
t−1∑
k=0

γkπ
t
k+1(L K )χk,

where χk = (L K − S∗x Sx) f z
k + S∗x y− L K fρ .

Proof. We use a new representation of f z
t , other than Proposition4.2(2),

f z
t+1 = f z

t − γt (S
∗
x Sx f z

t − S∗x y) = (1− γt L K ) f z
t + γt [(L K − S∗x Sx) f z

t + S∗x y].

By induction on t ∈ N, we reach

f z
t = π t−1

0 (L K ) f z
0 +

t−1∑
k=0

γkπ
t−1
k+1(L K )((L K − S∗x Sx) f z

k + S∗x y).

Subtracting on both sides of Proposition 4.2(1), we obtain the result.

Some useful upper bounds are collected in the following proposition.

Proposition 4.4. Assume that f0 = f z
0 = 0. Then, for all t ∈ N,

(1) ‖ ft‖K ≤
√∑t−1

k=0 γk‖ fρ‖ρ ;
(2) ‖ ft‖ρ ≤ ‖ fρ‖ρ ;

(3) ‖ f z
t ‖K ≤ M

√∑t−1
k=0 γk ;

(4) ‖ f z
t − ft‖K ≤ (

∑t−1
k=0 γk) sup1≤k≤t−1 ‖χk‖K ;

(5) ‖ f z
t − ft‖L 2

ρX
≤
√∑t−1

k=0 γk sup1≤k≤t−1 ‖χk‖K .

Proof. Throughout the proof we repeatedly use Corollary 4.1 and the isometry L1/2
K :

L 2
ρX
/ker(L K )→H K .
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The first three parts are based on Proposition 4.2 with f0 = f z
0 = 0,

ft = gt (L K )L K fρ, and f z
t = gt (S

∗
x Sx)S

∗
x y.

(1) Note that

‖ ft‖2
K = 〈gt (L K )L K fρ, gt (L K )L K fρ〉K = 〈L1/2

K fρ, [gt (L K )L K ]gt (L K )L
1/2
K fρ〉K ,

where, using rt (λ) = 1− λgt (λ),

r.h.s. = 〈L1/2
K fρ, (I − rt (L K ))gt (L K )L

1/2
K fρ〉K

≤ ‖gt (L K )‖‖L1/2
K fρ‖2

K =
t−1∑
k=0

γk‖ fρ‖2
ρ.

Taking the square root gives the result.
(2) Note that ‖ ft‖2

ρ = ‖L1/2
K ft‖2

K , whence

‖ ft‖ρ = ‖L1/2
K gt (L K )L K fρ‖K = ‖(I − rt (L K ))L

1/2
K fρ‖K ≤ ‖L1/2

K fρ‖2
K = ‖ fρ‖2

ρ.

(3) Let G be the m×m Grammian matrix Gi j = (1/m)K (xi , xj ). Clearly, G = SxS∗x .

‖ f z
t ‖2

K = 〈gt (S
∗
x Sx)S

∗
x y, gt (S

∗
x Sx)S

∗
x y〉K = 〈gt (G)y, gt (G)Gy〉m

= 〈gt (G)y, (I − rt (G))y〉m ≤ ‖gt (G)‖‖y‖2
m ≤ M2

t−1∑
k=0

γk .

The next two parts are based on Proposition 4.3 with zero initial conditions,

f z
t − ft =

t−1∑
k=0

γkπ
t
k+1(L K )χk .

(4) ‖ f z
t − ft‖K ≤

(
t−1∑
k=0

γk‖π t
k+1(L K )‖

)
sup

1≤k≤t−1
‖χk‖K ≤

(
t−1∑
k=0

γk

)
sup

1≤k≤t−1
‖χk‖K .

(5) Note that ‖ f z
t − ft‖2

ρ = ‖L1/2
K ( f z

t − ft )‖2
K , whence similar to part (4),

‖ f z
t − ft‖2

ρ =
〈

L1/2
K

t−1∑
k=0

γkπ
t
k+1(L K )χk, L1/2

K

t−1∑
k=0

γkπ
t
k+1(L K )χk

〉

≤ ‖rt (L K )‖
(

t−1∑
k=0

γk‖π t
k+1(L K )‖

)(
sup

1≤k≤t−1
‖χk‖K

)2

,

≤
(

t−1∑
k=0

γk

)(
sup

1≤k≤t−1
‖χk‖K

)2

.

The result follows by taking the square root.
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5. Bounds for Sample Error and Approximation Error

In this section we present the proofs of Theorems 2.9 and 2.10. Before that, we present
some concentration inequalities which are used in the probabilistic upper bound of
sample error.

5.1. Concentration of Random Hilbert–Schmidt Operators and Vectors

Recall that a bounded linear operator T is called a Hilbert–Schmidt operator if T = T ∗

and tr(T 2) < ∞. The set of Hilbert–Schmidt operators contains all finite-rank self-
adjoint operators and are contained in the set of compact operators. Given two Hilbert–
Schmidt operators S, T : H →H , we can define the inner product 〈S, T 〉H S = tr(S∗T )
and whence the norm ‖S‖H S =

√〈S, S〉H S . The completion with respect to this norm
gives a Hilbert space consisting of Hilbert–Schmidt operators. Therefore, we can apply
concentration inequalities in Hilbert spaces to study the random operators in this space.
In this paper we use the following result due to Iosif Pinelis (Pinelis, 1992).

Lemma 5.1 (Pinelis–Hoeffding). Let (ξi )i∈N ∈ H be an independent random se-
quence of zero means in a Hilbert space H such that for all i almost surely ‖ξi‖ ≤ ci <

∞. Then, for all t ∈ N,

Prob

{∥∥∥∥∥
m∑

i=1

ξi

∥∥∥∥∥ ≥ ε
}
≤ 2 exp

{
− ε2

2
∑m

i=1 c2
i

}
.

Note that S∗x Sx : H K → H K is a random Hilbert–Schmidt operator whose expecta-
tion is L K : H K →H K . The following proposition collects some useful bounds.

Proposition 5.2.

(1) ‖L K‖H S =
√

tr(L2
K ) ≤ κ2;

(2) tr(S∗x Sx ) ≤ κ2 for x ∈ X ;
(3) tr(S∗x Sx) ≤ κ2 for x ∈ Xm ;
(4) ‖S∗x Sx‖H S =

√
tr((S∗x Sx)2) ≤ κ2;

(5) ‖S∗x Sx − L K‖H S ≤
√

2κ2.

Proof. (1) This follows from Corollary 3 in Section 2, Chapter III of Cucker and Smale
(2002).

(2) Since S∗x Sx is a rank-one operator, then tr(S∗x Sx ) ≤ ‖S∗x Sx‖ ≤ κ2.
(3) By tr(A + B) = tr(A)+ tr(B),

tr(S∗x Sx) = 1

m

m∑
i=1

tr(S∗xi
Sxi ) ≤ κ2.

(4) Similarly,

tr((S∗x Sx)
2) = 1

m2

m∑
i, j=1

tr(S∗xi
Sxi S

∗
xj

Sxj ) ≤ κ4,

where tr(S∗xi
Sxi S

∗
xj

Sxj ) = k(xi , xj ) tr(S∗xi
Sxj ) ≤ κ4.
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(5) By definition,

‖S∗x Sx − L K‖2
H S = ‖S∗x Sx‖2

H S + ‖L K‖2
H S − 2 tr(S∗x Sx L K )

≤ ‖S∗x Sx‖2
H S + ‖L K‖2

H S ≤ 2κ4

since tr(S∗x Sx L K ) =
∑

i µiϕi (x)2 = K (x, x) ≥ 0, where (µi , ϕi ) is an eigensystem
of L K .

Let ξi = S∗xi
Sxi − L K . Setting ci =

√
2κ2 and ε = mε, by Lemma 5.1 we obtain

Proposition 5.3.

Prob{‖S∗x Sx − L K‖H S ≥ ε} ≤ 2 exp

{
−mε2

4κ4

}
.

Therefore with probability at least 1− δ (δ ∈ (0, 1)),

‖S∗x Sx − L K‖ ≤
∥∥S∗x Sx − L K

∥∥
H S ≤

2κ2

√
m

log1/2 2

δ
.

Note that S∗x y = (1/m)
∑m

i=1 yi Kxi is a random vector in H K with expectation
E[S∗x y] = L K fρ . Moreover, ‖S∗x y‖ ≤ ‖S∗x‖‖y‖ ≤ κM and ‖L K fρ‖ ≤ κM . Thus,
setting ξi = S∗x y− L K fρ , ci = 2κM , and ε = mε, by Lemma 5.1 we obtain

Proposition 5.4.

Prob{‖S∗x y− L K fρ‖K ≥ ε} ≤ 2 exp

{
− mε2

8κ2 M2

}
.

Therefore with probability at least 1− δ (δ ∈ (0, 1)),

∥∥S∗x y− L K fρ
∥∥

K ≤
2
√

2κM√
m

log1/2 2

δ
.

Concentration results of this kind were first obtained by De Vito, Rosasco, Caponnetto,
Giovannini, and Odone (2004).

5.2. A Probabilistic Upper Bound for Sample Error

Before the formal proof, we present a proposition which gives a probabilistic upper bound
on the random variable χt = (L K − S∗x Sx) f z

t + S∗x y − L K fρ using the concentration
inequalities in Propositions 5.3 and 5.4.

Proposition 5.5. With probability at least 1− δ (δ ∈ (0, 1)) there holds, for all t ∈ N,

sup
1≤k≤t−1

‖χk‖K ≤ 2(1+√2)κM√
1− θ log1/2 2

δ

√
t1−θ

m
.
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Proof. Note that

sup
1≤k≤t

‖χk‖K ≤ ‖L K − S∗x Sx‖ sup
1≤k≤t−1

‖ f z
k ‖K + ‖S∗x y− L K fρ‖K

≤ M

√
t−1∑
k=0

γk‖L K − S∗x Sx‖ + ‖S∗x y− L K fρ‖K .

Using
∑t−1

k=0 γk ≤ [1/κ2(1− θ)]t1−θ and Propositions 5.3 and 5.4, we have

M

√
t−1∑
k=0

γk‖L K − S∗x Sx‖ ≤ 2κ2 M√
m

log1/2 2

δ
· 1

κ
√

1− θ t (1−θ)/2

≤ 2κM√
1− θ log1/2 2

δ

√
t1−θ

m
,

and

‖S∗x y− L K fρ‖K ≤ 2
√

2κM√
m

log1/2 2

δ
.

Adding them together, and noticing that 1 ≤
√

t (1−θ)/(1− θ), we obtain the result.

Now we are in a position to prove Theorem 2.9.

Proof of Theorem 2.9. From Propositions 4.4(5) and 5.5, and
∑t−1

k=0 γk ≤
[1/κ2(1− θ)]t1−θ ,

‖ f z
t − ft‖ρ ≤

√
t−1∑
k=0

γk sup
1≤k≤t−1

‖χk‖K

≤ 1

κ
√

1− θ t (1−θ)/2
2(1+√2)κM√

1− θ log1/2 2

δ

√
t1−θ

m

≤ 2(1+√2)M

1− θ log1/2 2

δ
· t1−θ
√

m
,

which gives the first bound.
Similarly, replacing Proposition 4.4(5) by 4.4(4), we have

‖ f z
t − ft‖K ≤

t−1∑
k=0

γk sup
1≤k≤t−1

‖χk‖K

≤ 1

κ2(1− θ) t1−θ 2(1+√2)κM√
1− θ log1/2 2

δ

√
t1−θ

m

≤ 2(1+√2)M

κ(1− θ)3/2 log1/2 2

δ
· t (3/2)(1−θ)√

m
,

which gives the second bound.
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5.3. A Deterministic Upper Bound for Approximation Error

The following is the proof of Theorem 2.10 using a similar technique to Engl, Hanke,
and Neubauer (2000).

Proof of Theorem 2.10. Let fρ = Lr
K g with ‖g‖ρ ≤ R. By Proposition 4.2, with

f0 = 0,

ft − fρ = gt (L K )L K fρ − fρ = −rt (L K ) fρ,

whence

‖ ft − fρ‖ρ = ‖rt (L K )L
r
K g‖ρ ≤ R‖Lr

K rt (L K )‖.

where, with eigenvalues (µj )j∈N for L K ,

‖Lr
K rt (L K )‖ ≤ sup

j
λr

j

t−1∏
i=0

(1− γiµj ) = sup
j

exp

{
t−1∑
i=0

log(1− γiµj )+ r logµj

}

≤ sup
j

exp

{
−

t−1∑
i=0

γiµj + r logµj

}
,

where log(1+ x) ≤ x for x > −1.

But the function

f (x) = −
∑

i

γi x + r log x, x > 0,

is maximized at x∗ = r/(
∑

i γi ) with f (x∗) = −r + r log r − r log
∑

i γi . Taking
γt = 1/[κ2(t + 1)θ ], we obtain

‖Lr
K rt (L K )‖ ≤ (r/e)r

(
t−1∑
i=0

γi

)−r

≤
(

2rκ2

e

)r

t−r(1−θ),

using
∑t−1

k=0 γk ≥ (1/2κ2)t1−θ .
For the case of r > 1

2 , fρ ∈ H K , and by the isomorphism L1/2
K : L 2

ρX
/ker(L K ) →

H K ,

‖ ft − fρ‖K = ‖L−1/2
K ( ft − fρ)‖ρ = ‖Lr−1/2

K rt (L K )g‖ρ ≤ R‖Lr−1/2
K rt (L K )‖.

Replacing r by r − 1
2 above leads to the second bound.

6. Early Stopping in Classification

In this section we apply the Main Theorem to classifications and give a proof of The-
orem 2.6. The formal proof is presented at the end of this section and before that we
provide some background. For simplicity, we only use Tsybakov’s noise condition to
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derive the convergence rates. Our results can be extended to incorporate the geomet-
ric noise condition introduced by Steinwart and Scovel (2005), which is however not
pursued in this paper.

First recall different error measures for binary classification problems and then collect
some results on the relation between them. In this section let Y = {±1}. Define the
misclassification set

X f := {x ∈ X | sign f �= sign fρ}.
For classification problems, the following error measure is proposed in Smale and Zhou
(2005),

‖sign f − sign fρ‖ρ
which is equivalent to the probability of misclassification by f ,

‖sign f − sign fρ‖2
ρ = 4ρX (X f ).(17)

More often in the literature, the following misclassification risk is used

R( f ) = ρZ ({(x, y) ∈ Z | sign f (x) �= y}),
which is minimized at the so-called Bayes rule, sign fρ . It is easy to check that

R( f )− R( fρ) =
∫

X f

| fρ(x)| dρX (x).(18)

6.1. Tsybakov’s Noise Condition

The Tsybokov Noise Condition characterizes the regularity of the regression function
fρ when crossing its zero level set.

Define the Tsybakov function Tρ : [0, 1]→ [0, 1] by

Tρ(s) = ρX ({x ∈ X : fρ(x) ∈ [−s, s]}),(19)

which characterizes the probability of the level sets of fρ within [−s, s]. The following
Tsybakov noise condition (Tsyvakov, 2004), for some q ∈ [0,∞],

Tρ(s) ≤ Bqsq , ∀ s ∈ [0, 1],(20)

characterizes the decay rate of Tρ(s). In particular, when Tρ vanishes at a neighborhood
of 0 (i.e., Tρ(s) = 0 when s ≤ ε for some ε > 0), indicating a nonzero hard margin, we
have q = ∞.

The following equivalent condition is useful (see Tsyvakov, 2004; or Bousquet,
Boucheron, and Lugosi, 2004).

Lemma 6.1. Tsybakov’s condition (20) is equivalent1 to that, for all f ∈ L 2
ρX

,

ρX (X f ) ≤ cα(R( f )− R( fρ))
α,(21)

1 The uniform condition, for all f ∈ L 2
ρX

, is crucial for the direction (21)⇒ (20) as shown in the proof.
If we replace it by f ∈ HK , the two conditions are not equivalent. However, the proof of Theorem 2.6, or
Proposition 6.2(5), only requires the direction (20)⇒ (21).
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where

α = q

q + 1
∈ [0, 1](22)

and cα = Bq + 1 ≥ 1.

Proof. (20)⇒ (21) Recalling (18) we have the following chains of inequalities:

R( f )− R( fρ) ≥
∫

X f

| fρ(x)|χ| fρ(x)|>t dρX ≥ t
∫

X f

χ| fρ(x)|>t dρX

= t

[ ∫
X
χ| fρ(x)|>t dρX −

∫
X/X f

χ| fρ(x)|>t dρX

]

≥ t[(1− Bqtq)− ρX (X\X f )] = t (ρX (X f )− Bqtq).

The proof follows by taking

t =
(

1

Bq + 1
ρX (X f )

)1/q

and setting α as in (22).
(21)⇒ (20) Define, for s > 0,

Xs = {x ∈ X : | fρ(x)| ≤ s}.
Choose a f ∈ L 2

ρX
such that sign f = sign fρ on X\Xs and otherwise sign f �= sign fρ ,

then X f = Xs . Therefore,

ρX (X f ) = ρX (Xs) ≤ cα(R( f )− R( fρ))
α ≤ cα

(∫
Xs

| fρ(x)| dρX

)α
≤ cαtαρX (Xs)

α = cαtαρX (X f )
α,

whence ρX (X f ) ≤ c1/(1−α)
α tα/(1−α) which recovers (20) with q = α/(1 − α) and Bq =

c1/(1−α)
α .

6.2. Comparison Results and Proof of Theorem 2.6

Now recall several results relating the different error measures introduced above.

Proposition 6.2. Let f be some function in L 2
ρX

. The following inequalities hold:

(1) R( f )− R( fρ) ≤ ‖ f − fρ‖ρ ;
(2) If (21) hold, then R( f )− R( fρ) ≤ 4cα‖ f − fρ‖2/(2−α)

ρ ;
(3) R( f )− R( fρ) ≤ 1

2‖ fρ‖ρ‖sign f − sign fρ‖ρ ;
(4) R( f )− R( fρ) ≤ 1

4‖ f − fρ‖∞‖sign f − sign fρ‖2
ρ ;

(5) ‖sign f − sign fρ‖2
ρ ≤ 4T (‖ f − fρ‖∞);

(6) If (21) hold, then ‖sign f − sign fρ‖ρ ≤ 4cα‖ f − fρ‖α/(2−α)ρ .
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Remark 6.3. Part (4) was used in Smale and Zhou (2005) by applying bounds on
‖ f − fρ‖K to estimate ‖ f − fρ‖∞. Due to the square on the left-hand side, this loses a
power of 1

2 in the asymptotic rate. But turning to the weaker norm ‖ f − fρ‖ρ , part (5)
remedies this problem without losing the rate.

Proof. (1) The proof is straightforward by noting that

| fρ(x)| ≤ | f (x)− fρ(x)|(23)

when x ∈ X f . In fact, from (18),

R( f )− R( fρ) ≤
∫

X f

| f (x)− fρ(x)| ≤ ‖ f − fρ‖ρ.

(2) The inequality is a special case of Theorem 10 in Bartlett, Jordan, and McAuliffe
(2003). Here we give the proof for completeness. If we further develop (18) we get

R( f )− R( fρ) =
∫

X f

| fρ(x)|χ| fρ(x)|≤t dρX (x)+
∫

X f

| fρ(x)|χ| fρ(x)|>t dρX (x),

where for | fρ(x)| > t , | fρ(x)| = | fρ(x)|2/| fρ(x)| < (1/t)| fρ(x)|2. Then, by condi-
tions (21) and (23), we have

R( f )− R( fρ) ≤ tρX (X f )+ 1

t

∫
X f

| fρ(x)|2ρ dρX (x)

≤ tcα(R( f )− R( fρ))
α + 1

t
‖ f − fρ‖2

ρ.

The result follows by taking t = (1/2cα)(R( f )− R( fρ))1−α and (4cα)1/(2−α) ≤ 4cα as
α ∈ [0, 1] and cα ≥ 1.

(3) From (18), simply using the Schwartz Inequality we have

R( f )− R( fρ) = 1
2

∫
X

fρ(x)(sign f (x)− sign fρ(x)) dρX (x)

≤ 1
2‖ fρ‖ρ‖sign f − sign fρ‖ρ.

(4) Similarly to part (3), noting that for x ∈ X f , | fρ(x)| ≤ | f (x)− fρ(x)|, by (18),

R( f )− R( fρ) ≤ 1
4

∫
X
| f (x)− fρ(x)| · |sign f (x)− sign fρ(x)|2 dρX (x)

≤ 1
4‖ f − fρ‖∞‖sign f − sign fρ‖ρ,

which gives the result.
(5) See Proposition 2 in Smale and Zhou (2005).
(6) The proof follows from (17) by plugging in (21) and part (2).
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The following result provides an upper bound of the average ρX (X f ) over the training
samples by probability of a large deviation in supreme norm, when a hard margin exists.
This bound is crucial to obtain exponential rates in Theorem 2.6(3) for plug-in classifiers.
It is an adapted form from Lemma 3.6 in Audibert and Tsybokov (2005).

Proposition 6.4. Assume that

ρX (x ∈ X : | fρ(x)| ≤ γ ) = 0.

Then, for any mapping fz : Zm →H K , the following holds:

Ez∈Zm [ρX (X fz)] ≤ Prob{z ∈ Zm : ‖ fz − fρ‖∞ > γ }.

Proof. For any x ∈ X fz , note that

γ < | fρ(x)| ≤ | fz(x)− fρ(x)| ≤ ‖ fz − fρ‖∞.
Hence ρX (X fz) ≤ ρX (| fz(x)− fρ(x)| > γ ) and

Ez∈Zm [ρX (| fz(x)− fρ(x)| > γ )] = Ez∈Zm [Ex∈X [1{| fz(x)− fρ(x)|>γ }]]

≤ Ez∈Zm [1{‖ fz− fρ‖∞>γ }

which equals the right-hand side.

Now we are ready to give the proof of Theorem 2.6.

Proof of Theorem 2.6. (1) This follows from the Main Theorem(1) with Proposi-
tion 6.2(6).

(2) By Proposition 6.2(5),

‖sign( f z
t∗)− sign( fρ)‖ρ ≤ 2T 1/2(‖ f z

t∗ − fρ‖∞) ≤ 2B1/2
q ‖ f z

t∗ − fρ‖q/2
∞

≤ 2
√
κBq‖ f z

t∗ − fρ‖q/2
K .

The result then follows from the Main Theorem(2).
(3) From Proposition 6.4,

‖sign( f z
t∗)− sign( fρ)‖ρ = 4ρX (X f z

t∗
) ≤ Prob{z ∈ Zm : ‖ fz − fρ‖∞ > γ }

≤ Prob{z ∈ Zm : ‖ fz − fρ‖K > γ/κ}.
Now apply the Main Theorem(2), by setting

Dρ,K δm
−(r−1/2)/(2r+2) ≥ γ

κ
,

which gives

log1/2 2

δ
≥ 1

κC9
m(r−1/2)/(2r+2) − C10

C9
,(24)
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where

C9 = 4(1+√2)M

κ(1− θ)3/2 and C10 = R

(
2(r − 1

2 )κ
2

e

)r−1/2

.

Replacing log1/2 2/δ by its upper bound log 2/δ · log−1 2, inequality (24) leads to an
upper bound on δ,

δ ≤ C11e−C12γm(r−1/2)/(2r+2)
,

where C11 = 1
2 exp(C10 log 2/C9) and C12 = log 2/(κC9). This gives the upper bound,

‖sign( f z
t∗)− sign( fρ)‖ρ ≤ Prob{z ∈ Zm : ‖ fz − fρ‖K > γ/κ}

≤ C11e−C12γm(r−1/2)/(2r+2)
,

which completes the proof.

7. Conclusion and Open Problems

In this paper we present some upper bounds for early stopping regularization to approx-
imate the regression function fρ from a reproducing kernel Hilbert space H K when
fρ lies in the image of Lr

K (r > 0). These upper bounds have asymptotic rates of
O(m−r/(2r+2)) for L 2

ρX
-convergence when r > 0, and O(m−(r−1/2)/(2r+2)) for a stronger

H K -convergence when r > 1
2 . A direct application of these upper bounds in classi-

fications leads to some fast convergence rates for the plug-in classifiers. In particular,
exponential convergence rates are achieved when r > 1

2 and a hard margin condition
holds for fρ .

On the other hand, these upper bounds are suboptimal and it is still an open problem
as to how to achieve the optimal L 2

ρX
-convergence rates O(m−r/(2r+1)) for all r > 0.
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